4F3am14 2026/03/12 11:48 °ìÈֱ̹é F3 µ¡³£³Ø½¬¥â¥Ç¥ê¥ó¥°¤òÍѤ¤¤¿¿¢ÊªÀ¸°é¤òÂ¥¿Ê¤¹¤ëº¬·÷ÈùÀ¸ÊªÁѤÎÀß·× Machine learning-driven design of rhizosphere microbiota to enhance plant growth and heat resilience ¡ûÀÄÌÚ Íµ°ì1,2»³ùõ ¿¿°ì3Ãæ°Â Âç4¶â°æ ·Ã»Ò4¿åÌî Τ¹¾4³¤ÅÄ ¤ë¤ß5ÁýÅÄ ¹¬»Ò3¼ÆÅÄ ¤¢¤ê¤µ3Çò¿Ü ¸3±ÊÌî Æ×6,7Æ£°æ µÁÀ²5¿ù»³ ¶Ç»Ë4¡ûYuichi AOKI1,2 Shinichi YAMAZAKI3 Masaru NAKAYASU4 Keiko KANAI4 Rie MIZUNO4 Rumi KAIDA5 Sachiko MASUDA3 Arisa SHIBATA3 Ken SHIRASU3 Atsushi NAGANO6,7 Yoshiharu FUJII5 Akifumi SUGIYAMA4 1ÅìËÌÂç ToMMo¡¢2ÅìËÌÂ籡¾ðÊó¡¢3Íý¸¦ ´Ä¶»ñ¸»²Ê³Ø¸¦µæ¥»¥ó¥¿¡¼¡¢4µþÂç À¸Â¸·÷¸¦µæ½ê¡¢5ÅìµþÇÀ¹©Âç³Ø¡¢6̾¸Å²°Âç À¸Êªµ¡Ç½³«È¯ÍøÍѸ¦µæ¥»¥ó¥¿¡¼¡¢7·ÄØæµÁ½Î ÂçÀèüÀ¸Ì¿²Ê³Ø¸¦µæ½ê 1ToMMo, Tohoku Univ., 2GSIS, Tohoku Univ., 3RIKEN CSRS, 4RISH, Kyoto Univ., 5Tokyo University of Agriculture and Technology, 6BBC, Nagoya Univ., 7IAB, Keio Univ. Solanum lycopersicum / Rhizosphere Microbiome / Machine Learning